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A method is proposed for determining thermophysicai properties of thin metallic 
films, using ~Oiutions of converse thermal conductivity problems. 

Various methods are known for determining thermophysicai characteristics of thin films 
[1-3], but the most promising appear to be those based on solution of converse thermal conduc- 
tivity problems [4-9]. In this technique the known boundary conditions and results of tem- 
perature measurements within the body are used to determine the unknown thermophysicai (uan- 
tities. 

The method to be described is analogous to that of [4, 7], but differs in that the 
finite element method is used for solution of the direct nonlinear thermal conductivity 
problem. This approach is used because no problems of stability in the numerical solutions 
obtained develop in the case of materials with differing thermophysical characteristics. 

The metal films to be studied, grown on dielectric substrates, were placed on a massive 
base in a vacuum cryostat [i0]. The temperature coefficient of the film electrical resist- 
ance was measured first. To determine the unknown quantities shor duration (%4 msec) r~c- 
tangular pulses of dc current were passed through the specimen. Upon heating by the pu]sed 
current the temperature regime of the deposited film can be determined by solution of t~e 
nonsteady state nonlinear thermal conductivity equation [ii]: 

or  o 0 < x < b ,  (1) 
C~(73 O ~ -  0~- 0<t<t* .  

We c o n s i d e r  h e a t  p r o p a g a t i o n  i n  o n l y  one  d i r e c t i o n  - t h r o u g h  t h e  t h i c k n e s s  o f  t h e  f i l m -  
substrate-base system. We assume the thermal contact between the layers ideal, i.e., wE 
assume equality of temperatures and thermal fluxes at the layer boundaries. The following 
boundary conditions are specified: 

0---~-T (0, t ) = O ,  O < t • / * ;  (2 )  
Ox 

OT 
base- -~-  x (b, T) = a ( r  - -  T,), 0 < t ~ t*. (3 )  

The i n i t i a l  t e m p e r a t u r e  o f  t h e  e n t i r e  s y s t e m  i s  assumed c o n s t a n t  and e q u a l  t o  t h e  t e m p e i a -  
t u r e  o f  t h e  s u r r o u n d i n g  medium: 

r (x ,  0 ) = T ,  O ~ x < ~ b .  (4)  

The i n p u t  d a t a  f o r  s o l u t i o n  o f  t h e  c o n v e r s e  t h e r m a l  c o n d u c t i v i t y  p r o b l e m  a r e  t e m p e r a t u r e  
m e a s u r e m e n t s  a t  one  o r  s e v e r a l  p o i n t s ,  as  i n d i c a t e d  in  F i g .  1: 

T(xi, l ) =  [i(O, i =  1, 2 . . . . .  N. 

As a criterion for choice of the unknown characteristics we use the mean square deviaticn of 
the temperature values calculated from the mathematical model of Eqs. (1)-(4) at the points 
of sensor installation from the experimentally measured values: 

N /* 

J (C., ~8) = ~ .f IT (xi, t, C., ~)  - -  f (x,, t)] 2 dr. (5)  
i ~ l  0 
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Fig. i. Diagram of experimental 
method: i) temperature sensors; 2) 
~t~hin~metal film; 3) dielectric sub- 
;st=ate;~)~m~ssive base. 

}{ere T(xi~, t~ Cs, l~) are the :calculated ~emperatu=e ,values =at ~s ;points xi, i = I, 2, 3, 
..., N, ~l~d by solution Of ~he ~n~~nndary ~.probl~m, ~Eqs~. '-'.(:.'I.)-(4): f(xi, t) are 
the measured temperature values of these sam~ ~nts~, %~6 ~Jaeinjg ~assum~ ~.that ~for the ~given 
temperature range it is known that: 

Cmtn<C.f<Cmax, ~mtn< X f~.~max- 

i t  has been es tab l ished by the ana lys is  of  cond i t ions  fo r  ex is tence and un$~eness 
of the solution of the converse problem presented in [4, 9] that for unambiguous rees~b?]Sish- 
ment of two thermophysical characteristics a unique solution of the converse t~ermal con- 
ductivity problem can be produced by temperature measurements at two separate points and 
specification on at least one of the boundaries of a boundary condition of the second sort. 
With the thermal flux density necessarily being nonzero. In our case we specify a condition 
of the third sort with known heat exchange coefficient and known temperature of the external 
medium. The unknown heat capacity and thermal conductivity coefficients ,of ~he ~i~ 
approximated in the form [12]: 

:m 

c,<D = ~ c%<(r), (~6) 

m 

~,, (r) -=- ~'  ~,k% (T), ( 7 ) 
k = l  

where C k, I k are the unknown coefficients of the expansion: ~h(T) 
third order functions ~ith compact carrier of the form of [12]: 

<p~=@( .1 - - .  t), ~ = @ < ( l + t ) ,  i f  m = ' 2 ,  

,p, = @ (1 - t) r ~, = ( 1 - 0  ( 1 +  0, ~.  =--1~ ~t + , 0  ~. :~ 

qh ---- - - - -  
16 

9 

q%=-TS-(t+l) t -  2 

27 (t-l-l)(t++)(t--1). 
% = - -  I---6- 

are first, second, and 

(8) 

if m: 4. 
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As results of processing experimental data show, the temperature dependence of ffhermo- 
physical characteristics of various materials can be approximated well by polynomials of 
no more than third degree [7]. To find the minimum of functional (5) we use the gradient 
projection method [13]. Calculation of the gradient of the functional, as required by this 
method, is carried out by solution of the initial-boundary problem, combined with the problem 
of temperature increase in the film-substrate-base system. Considering the problem of Eqs. 
(1)-(4) as a multilayer one with number of layers greater than three, where the boundaries 
of layers with identical thermophysical characteristics coincide with the points of attachment 
of the temperature sensors, we obtain an expression for the gradient components along the 
unknown parameters. It is assumed that "ideal" thermal contact between layers is accom- 
plished and contact thermal resistances are equal to zero, i.e., the conditions 

OT~ aT~+I (xi+, t), Ti (x~+p t)= T~+I(&+I, t), - ~ x  (xi+l, t ) =  0----7 

a r e  s a t i s i f e d .  Fol lowing  the  method of  [4, 7, 13] we i n t r o d u c e  t h e  i n i t i a l - b o u n d a r y  problem 
con juga te  to  t he  problem of  the  change in t empera tu re  f i e l d s ,  of  the  form 

o~ O~x~b ,  (9) 
- -  G ( ~ )  a~,~ ...... ~ (~) , 

at at o ~ t <~ t*, 
~i(xi, t*) = O, (I0) 

~(0, t) = O, (11)  

[ Ox Ox (&' t) =2[T~i( &, t)--f~(t)], (12) 

%_1(x~, t ) = ~ ( x i ,  t), (13)  

~. a~,,(b, t) _ r  t). (14) 
Ox 

Now in a manner similar to [5, 8, 9] we obtain for the components of the gradient of func- 
tional (5): 

OJ i [  - - , ( b ,  t ) % . ( T ) - - ] d t +  o~,, - . ( o ,  t),h(T) aT aT 1 
o o Ox x=o Ox ]~=~ 

v ,* [ O~T ( 07' ~2 0% (T) ] dxdt, + S .i * (x, % (T) + o o 'ka~~ \ ax / 5 f ]  
! 

-- !" j' ~. (x, t) % (T) dxdt. 
8C~ o o 

tta~ing ob ta ined  in  e x p l i c i t  form t h e  g r a d i e n t  of  t he  e n t i r e  f u n c t i o n a l  (5 ) ,  we can c o n a t r u c t  
an effective algorithm for its minimization. Here we make use of the gradient projection 
method of [13]. In the given case this reduces to construction of a minimizing sequence 
of the form: 

Z-~-,,..~ i Z:~.,,. P~ < Z~,m,, (15) 

where 

The descen t  parameter  B i s  chosen by us ing  the  one-d imens iona l  o p t i m i z a t i o n  method. Ccnse- 
q u e n t l y ,  t h e  a l g o r i t h m  c o n s t r u c t e d  f o r  f i n d i n g  the  f u n c t i o n s  A(T) and C(T) c o n s i s t s  of  t he  
f o l l o w i n g .  A number of  e q u i d i s t a n t  nodes m a re  s p e c i f i e d  f o r  i n t e r p o l a t i o n  of  the  unknown 
f u n c t i o n s  by po lynomia ls  of  t he  form of  Eq. (8) over t he  i n t e r v a l  [Tmi n,  Tmax], which i s  
determined be forehand .  Then i n i t i a l  va lues  a re  chosen fo r  t he  unknown c o e f f i c i e n t s  (A s ,  C s} 
j u s t  as in  the  case  of  massive  bod ie s ,  and the  problem of  Eqs. ( 1 ) - ( 4 )  i s  so lved  numer- 
i c a l l y .  From the temperature field T(x, t) found in this manner and appearing in the bound- 
ary conditions, for the conjugate problem of Eqs. (15), (16) we find the minimum of func- 
tional (5) in the given direction by the golden section method. The values obtained for 
{Xs, Cs} are used as an initial approximation for the following iteration. The process 
is terminated when: 
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m t* 

.j (x,, t) - t, a t  6"-, 
i = 1  0 

n t *  

where 82=E[ Gidt is an estimate of the generalized uncertainty of the initial data, o i is 
i=I 0 

the mean square deviation of the input data at the points x = x i at time t. 

The algorithm described above was realized in the form of a Fortran program for an 
ES computer. In solving the nonlinear thermal conductivity problem the Krank-Nicholson- 
Galerkin method [14] and the finite element method with second order approximation were 
used. Use of the semidiscrete approximations: 

N 

T,, (x, l) = E Q' (z) % (x) 
t = l  

transforms the solution of the initial-boundary problem, Eqs. (I)-(7), to a solution of 
the Cauchy problem for a system of nonlinear differential equations of the form: 

(C (TT,) +J ., t'0 -}- a(T~, T,~, ~i)--=Tn~i = (117, ~12~ ) -k =To~i, ( 1 7 )  

(T~, ~'~)~=o = (To, ~), i= 1, 2, 3 .... .  N. (18) 

Here the notation [Tn = 8Tn/St has been introduced and it is considered that 8Tn/ST E L=[0, 
t*], (-, -) - the scalar product in L=(0, b): 

b b (u,v)= T,,, aT,, o:r,, 
o , , : 0 Ox Ox 

Now, w r i t i n g  Eqs .  ( 1 7 )  and  ( 1 8 )  i n  m a t r i x  f o r m ,  we o b t a i n :  

M (Q) Q (t) + G (Q) Q (t) --- F (t), 

Q (0) = r. 
2 

= MAt, At = t~/M, where M is an integer and F m = F(~m); Q(t) = Xqixi(t) 
i= 1 

( 1 9 )  

(20) 

, were Xi(t) Let t m 

are linear base functions. Then the Cauchy problem for the system of nonlinear differential 
equations (19)-(20) reduces to solution of the system 

M(q+@) qm+l--qmAt +G(%,+ +) =Fm+ T1 �9 
(21) 

~ere q i :0qm+x+(l--O)q m " where 0 ~ 8 ~ i, while F i =0Fm+(l--0) Fm" 
m+ y m+ y 

TO find the vector qm we must solve the system of nonlinear algebraic equations, Eq. 
(21), for each step in time. To avoid iteration procedures of the Newton-Kantorovich method 
type, we use a predictor-corrector algorithm. In each time step we must then solve two 
systems of nonlinear algebraic equations: 

M (qm) ~m+, - -  qm + G (qm) q~ -- F , (qm), 
A~ m+ T 

M ( ~m+l~ qm ) [q re+l--ore .+_ G ( ~m+l-qm 

A similar method is used for solution of the conjugate problem in Eqs. (9)-(14). Thus 
a quite general algorithm has been proposed for determining thermophysical characteristics 
of materials - heat capacity and thermal conductivity. The case in which one of the charac- 
teristics is known decreases the minimum number of sensors for temperature measurement, 
while the algorithm remains unchanged. To check the software developed a test problem of 
reconstructing the thermal conductivity coefficient of a thin film was considered. On the 
whole the mathematical testing performed showed the effectiveness of the approach described 
for determining thermophysical characteristics of thin films. 
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NOTATION 

T(x, t), temperature at point x; t, times; Cs(T), ls(T), heat capacity and thermal con- 
ductivity coefficients; ~, heat exchange coefficient; To, temperature of external medium; 
O(t), specific power of heat sources. 
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DETERMINATION OF THERMAL CONTACT RESISTANCES USING THE SPECTRAL 

FUNCTIONS OF BOUNDARY EFFECTS 

O. S. Tsakanyan UDC 536.24 

A method is proposed for determining thermal contact resistances by solving the 
inverse heat-conduction problem. 

The growing requirements for the design of economical heat machines cannot be sat:~sfied 
without knowledge of the heat processes occurring in them. The study of heat-exchange pro- 
cesses involves a full+scale:thermophysical experiment which provides information about 
the temperature field from a limited set of observation points, located inside the mad~ine; 
this information is then used to solve the inverse heat-conduction (IHC) problem in order 
to find the boundary effects, which are necessary for determining the thermally stressed 
state of the parts and units of heat machines. 

It is of particular interest to determine boundary conditions of the fourth kind, i.e., 
the thermal contact resistances (TCR's) between the surfaces of the parts in contact, with 
the aid of the solution of the IHC problem from the results of a thermophysical experiment. 

The dynamics of the thermal process for a composite body is described by the heat equa- 
tion 

--[ T) aT ] a [ T) aT 1 (x, g, T) a ~ (x, y, + ~, (x, y, = cv -- 
ax ~ax j ~ ay j 

aT 
a~ (1) 

Besides Eq. (I), the mathematical model (of the phenomenon under consideration) deter- 
mining the thermal state of the object also contains the initial edge conditions 
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