THERMOPHYSICAL PROPERTIES OF THIN METAL FILMS
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A method is proposed for determining thermophysical properties of thin metallic
films, using sSlutions of converse thermal conductivity problems.

Various methods are known for determining thermophysical characteristics of thin films
[1-3], but the most promising appear to be those based on solution of converse thermal conduc-
tivity problems [4-9). 1In this technique the known boundary conditions and results of tem-
perature measurements within the body are used to determine the unknown thermophysical cuan-
tities.

The method to be described is analogous to that of [4, 7], but differs in that the
finite element method is used for solution of the direct nonlinear thermal conductivity
problem. This approach is used because no problems of stability in the numerical solutions
obtained develop in the case of materials with differing thermophysical characteristics.

The metal films to be studied, grown on dielectric substrates, were placed on a massive
base in a vacuum cryostat [10]. The temperature coefficient of the film electrical resist-
ance was measured first. To determine the unknown quantities shor duration (v4 msec) rec-
tangular pulses of dc current were passed through the specimen. Upon heating by the pulsed
current the temperature regime of the deposited film can be determined by solution of tle
nonsteady state nonlinear thermal conductivity equation [11]:
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We consider heat propagation in only one direction — through the thickness of the film- -
substrate-base system. We assume the thermal contact between the layers ideal, i.e., we
assume equality of temperatures and thermal fluxes at the layer boundaries. The following
boundary conditions are specified:
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The initial temperature of the entire system is assumed constant and equal to the tempera-
ture of the surrounding medium:

T, =T, 0<x <o (4)

The input data for solution of the converse thermal conductivity problem are temperature
measurements at one or several points, as indicated in Fig. 1l:
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As a criterion for choice of the unknown characteristics we use the mean square deviation of
the temperature values calculated from the mathematical model of Egs. (1)-(4) at the points
of sensor installation from the experimentally measured values:
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Fig. 1. Diagram of experimental
method: 1) temperature sensors; 2)
thin smetal £ilm; 3) dielectric sub-
strate; 4) massive base.

Here'T(xi” t, Cg» ASB are ‘the :cdlculated ‘temperature walues .at ‘the points x3;, 1 =1, 2, 3,
..., N, obtained by solution of the #nitial-boundary problem, Egs. (1)-(4): f£(x;, t) are
the measured temperature values of these same points, it heing .assumed that #or the given
temperature range it is known that:
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It has been established by the analysis of conditions for existence and unigueness

of the solution of the converse problem presented in [4, 9] that for unambiguous reestablish~
ment of two thermophysical characteristics a unique solution of the converse thermal con-
ductivity problem can be produced by temperature measurements at two separate points and
specification on at least one of the boundaries of a boundary condition of the second sort.
With the thermal flux density necessarily being nonzero. In our case we specify a condition
of the third sort with known heat exchange coefficient and known temperature of the external
medium. The unknown heat capacity and thermal conductivity coefficients of the film arve

approximated in the form [12]:
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where CK, 2K are the unknown coefficients of the expansion: ®x(7) are first, second, and
third order functions with compact carrier of the form of [12]:
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As results of processing experimental data show, the temperature dependence of thermo-
physical characteristics of various materials can be approximated well by polynomials of
no more than third degree [7]. To find the minimum of functional (5) we use the gradient
projection method [13]. Calculation of the gradient of the functional, as required by this
method, is carried out by solution of the initial-boundary problem, combined with the problem
of temperature increase in the film-substrate-base system. Considering the problem of Egs.
(1)-(4) as a multilayer one with number of layers greater than three, where the boundaries
of layers with identical thermophysical characteristics coincide with the points of attachment
of the temperature sensors, we obtain an expression for the gradient components along the
unknown parameters. It is assumed that "ideal" thermal contact between layers is accom-
plished and contact thermal resistances are equal to zero, i.e., the conditions
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are satigifed. Following the method of [4, 7, 13] we introduce the initial-boundary problem
conjugate to the problem of the change in temperature fields, of the form

oy, oy, 0<Cx<h, (9)
— Cy () — = h () L VSIS
W= =hW 7= o s,
V(v %) =0, (10)
$(0, =0, (11)
| TR G O~ Gt 9| =207 e D00 | (12)
Ipi_}_(xh t) = q’i (xia t)’ (13)

, 0% (b, D)
A—»—-—é;——-zxp{b, B. (14)

Now in a manner similar to [5, 8, 9] we obtain for the components of the gradient of func-
tional (5):
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Having obtained in explicit form the gradient of the entire functicnal (5), we can construct
an effective algorithm for its minimization. Here we make use of the gradient project:ion
method of [13]. In the given case this reduces to construction of a minimizing sequence
of the form:
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The descent parameter B is chosen by using the one-dimensional optimization method. Ccnse-
quently, the algorithm constructed for finding the functions A(T) and C(T) consists of the
following. A number of equidistant nodes m are specified for interpolation of the unknown
functions by polynomials of the form of Eq. (8) over the interval [Tpin, Tpaxl, which is
determined beforehand. Then initial values are chosen for the unknown coefficients {Ag, Cg}
just as in the case of massive bodies, and the prcblem of Egs. (1)-(4) is solved numer-
ically. From the temperature field T(x, t) found in this manner and appearing in the bound-
ary conditions, for the conjugate problem of Egs. (15), (16) we find the minimum of func-
tional (5) in the given direction by the golden section method. The values obtained for
{Ag, Cg)} are used as an initial approximation for the following iteration. The process

is terminated when:
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where 6%=:Sj c;ii- is an estimate of the generalized uncertainty of the initial data, o3 is
=10
the mean square deviation of the. input data at the points x = xj at time t.
The algorithm described above was realized in the form of a Fortran program for an
ES computer. In solving the nonlinear thermal conductivity problem the Krank—Nicholson—
Galerkin method [14] and the finite element method with second order approximation were
used. Use of the semidiscrete approximations:
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transforms the solution of the initial-boundary problem, Egs. (1)-(7), to a solution of
the Cauchy problem for a system of nonlinear differential equations of the form:
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Here the notation [T = 3T,/9t has been introduced and it is considered that 3T,/3T € L,[0,
t*], (+, ) — the scalar product in L,(0, b):
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Now, writing Egs. (17) and (18) in matrix form, we obtain:
MQOAM+GQQW=F(@), (19)
Q) =r. (20)

2
Let ty = MAt, At = t*/M, where M is an integer and Fy = F(1p); Q(t) = :EqﬂiU) , were X;(t)
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are linear base functions. Then the Cauchy problem for the system of nonlinear differential
equations (19)-~(20) reduces to solution of the system
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To find the vector gy we must solve the system of nonlinear algebraic equations, Eg.
(21), for each step in time. To avoid iteration procedures of the Newton—Kantorovich method
type, we use a predictor-corrector algorithm. In each time step we must then solve two
systems of nonlinear algebraic equations:
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A similar method is used for solution of the conjugate problem in Egs. (9)-(14). Thus
a quite general algorithm has been proposed for determining thermophysical characteristics
of materials — heat capacity and thermal conductivity. The case in which one of the charac-
teristics is known decreases the minimum number of sensors for temperature measurement,
while the algorithm remains unchanged. To check the software developed a test problem of
reconstructing the thermal conductivity coefficient of a thin film was considered. On the
whole the mathematical testing performed showed the effectiveness of the approach described
for determining thermophysical characteristics of thin films.
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NOTATION

T(x, t), temperature at point x; t, times; Cg(T), Xg(T), heat capacity and thermal con-
ductivity coefficients; a, heat exchange coefficient; T,, temperature of external medium;
Q(t), specific power of heat sources.
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DETERMINATION OF THERMAL CONTACT RESISTANCES USING THE SPECTRAL
FUNCTIONS OF BOUNDARY EFFECTS

0. S. Tsakanyan UDC 5136.24

A method is proposed for determining thermal contact resistances by solving the
inverse heat-conduction problem.

The growing requirements for the design of economical heat machines cannot be satisfied
without knowledge of the heat processes occurring in them. The study of heat-exchange pro-
cesses involves a full-scale:thermophysical experiment which provides information aboul
the temperature field from a limited set of observation points, located inside the macliine;
this information is then used to solve the inverse heat-conduction (IHC) problem in order
to find the boundary effects, which are necessary for determining the thermally stressed
state of the parts and units of heat machines.

It is of particular interest to determine boundary conditions of the fourth kind, i.e.,
the thermal contact resistances (TCR's) between the surfaces of the parts in contact, with
the aid of the solution of the IHC problem from the results of a thermophysical experiment.

The dynamics of the thermal process for a composite body is described by the heat equa-
tion

a ar a aT ﬁT
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Besides Eq. (1), the mathematical model (of the phenomenon under consideration) deter-
mining the thermal state of the object also contains the initial edge conditions
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